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PREFACE

In-situ measurements of glacier mass balance constitute – and will continue to constitute – a key element 
in worldwide glacier monitoring as part of global climate-related observation systems. They improve our 
understanding of the involved processes relating to earth-atmosphere mass and energy fluxes and provide 
quantitative data at high (annual, seasonal) time resolution, which enables numerical models to be developed 
for climate-glacier relationships. Together with more numerous observations of glacier length change and 
air- and space-based spatial information on large glacier samples, this process understanding and quantitative 
modelling helps to bridge the gap between detailed local studies and global coverage. It also fosters realistic 
anticipation of possible further developments. The latter includes worst-case scenarios of drastic to even 
complete deglaciation in many mountain regions of the world as early as the next few decades. On a century 
time scale, changes in glaciers and ice caps are an easily recognized reflection of rapid if not accelerating 
changes in the energy balance of the earth’s surface and, hence, are also among the most striking indicators in 
nature of global climate change. The general losses in length, area, thickness and volume of firn and ice can 
be visually detected and qualitatively understood by everyone. Numeric values and comprehensive analysis, 
however, must be provided by advanced science: while the initial phases following the cold centuries of the 
Little Ice Age were most probably related to effects from natural climate variability, anthropogenic influences 
have increased over the past decades to such an extent that – for the first time in history – continued shrinking 
of glaciers and ice caps may have become primarily forced by human impacts on the atmosphere. 

International assessments such as the periodical reports of the Intergovernmental Panel on Climate Change 
(IPCC), the Cryosphere Theme Report of the WMO Integrated Global Observing Strategy (IGOS 2007) or 
various GCOS/GTOS reports (for instance, the implementation plan for the Global Observing System for 
Climate in support of the UNFCCC; GCOS 2009) clearly recognize glacier changes as high-confidence climate 
indicators and as a valuable element in early detection strategies. The report on «Global glacier changes – 
facts and figures» recently published by WGMS under the auspices of UNEP (WGMS 2008) presents a 
corresponding overview and detailed background information. Glacier changes in the perspective of global 
cryosphere evolution is treated in the «Global outlook for ice and snow » issued by UNEP (2007).   

In order to further document the evolution and to clarify the physical processes and relationships involved, 
the World Glacier Monitoring Service (WGMS) of the International Association for the Cryospheric Sciences 
(IACS/IUGG) as one of the permanent services of the World Data System within the International Council of 
Science (WDS/ICSU) collects and publishes standardized glacier data. This long-term activity is a contribution 
to the Global Climate/Terrestrial Observing Systems (GCOS/GTOS), to the Division of Early Warning and 
Assessment and the Global Environment Outlook as part of the United Nations Environment Programme 
(DEWA and GEO, UNEP), as well as to the International Hydrological Programme (IHP) of the United Nations 
Educational, Scientific and Cultural Organisation (UNESCO). In close cooperation with the Global Land Ice 
Measurement from Space (GLIMS) initiative and the National Snow and Ice Data Center (NSIDC) at Boulder, 
Colorado, an integrated and multi-level strategy within the Global Terrestrial Network for Glaciers (GTN-G) 
of GTOS is used to combine in-situ observations with remotely sensed data, process understanding with 
global coverage, and traditional measurements with new technologies. This approach, the Global Hierarchical 
Observing Strategy (GHOST), applies observations in a system of tiers. Tier 2 includes detailed glacier mass 
balance measurements within major climatic zones for improved process understanding and calibration of 
numerical models. Tier 3 uses cost-saving methodologies to determine regional glacier volume change within 
major mountain systems. The mass balance data compilation of the World Glacier Monitoring Service – a 
network of, at present, about 110 glaciers in 24 countries/regions, representing tiers 2 and 3 – is published in 
the form of the bi-annual Glacier Mass Balance Bulletin as well as annually in electronic form. Such a sample 
of glaciers provides information on presently observed rates of change in glacier mass as well as their regional 
distribution patterns and acceleration trends as an independent climate proxy.
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The publication of standardized glacier mass balance data in the Glacier Mass Balance Bulletin is restricted 
to measurements which are based on the direct glaciological method and requested to be compared, and 
if necessary, adjusted to geodetic or photogrammetric surveys repeated at about decadal time intervals. In 
accordance with an agreement made with the international organizations and countries involved, preliminary 
glacier mass balance values are made available one year after the end of the measurement period on the WGMS 
homepage (www.wgms.ch). This internet homepage also contains former issues of and the present Glacier 
Mass Balance Bulletin, as well as explanations of the monitoring strategy. The following series of reports on 
the variations of glaciers in time and space has already been published by the WGMS and its predecessor, the 
Permanent Service on the Fluctuations of Glaciers (PSFG): 

 • Fluctuations of Glaciers 1959–1965 (Vol. 1, P. Kasser) 
 • Fluctuations of Glaciers 1965–1970 (Vol. 2, P. Kasser) 
 • Fluctuations of Glaciers 1970–1975 (Vol. 3, F. Müller) 
 • Fluctuations of Glaciers 1975–1980 (Vol. 4, W. Haeberli) 
 • Fluctuations of Glaciers 1980–1985 (Vol. 5, W. Haeberli and P. Müller) 
 • Fluctuations of Glaciers 1985–1990 (Vol. 6, W. Haeberli and M. Hoelzle) 
 • Fluctuations of Glaciers 1990–1995 (Vol. 7, W. Haeberli, M. Hoelzle, S. Suter and R. Frauenfelder) 
 • Fluctuations of Glaciers 1995–2000 (Vol. 8, W. Haeberli, M. Zemp, R. Frauenfelder, M. Hoelzle and A. Kääb) 
 • Fluctuations of Glaciers 2000–2005 (Vol. 9, W. Haeberli, M. Zemp, A. Kääb, F. Paul and M. Hoelzle) 
 • World Glacier Inventory – Status 1988 (W. Haeberli, H. Bösch, K. Scherler, G. Østrem and C.C. Wallén) 
 • Glacier Mass Balance Bulletin No. 1, 1988–1989 (W. Haeberli and E. Herren) 
 • Glacier Mass Balance Bulletin No. 2, 1990–1991 (W. Haeberli, E. Herren and M. Hoelzle) 
 • Glacier Mass Balance Bulletin No. 3, 1992–1993 (W. Haeberli, M. Hoelzle and H. Bösch) 
 • Glacier Mass Balance Bulletin No. 4, 1994–1995 (W. Haeberli, M. Hoelzle and S. Suter) 
 • Glacier Mass Balance Bulletin No. 5, 1996–1997 (W. Haeberli, M. Hoelzle and R. Frauenfelder) 
 • Glacier Mass Balance Bulletin No. 6, 1998–1999 (W. Haeberli, R. Frauenfelder and M. Hoelzle) 
 • Glacier Mass Balance Bulletin No. 7, 2000–2001 (W. Haeberli, R. Frauenfelder, M. Hoelzle and M. Zemp) 
 • Glacier Mass Balance Bulletin No. 8, 2002–2003 (W. Haeberli, J. Noetzli, M. Zemp, S. Baumann, R. Frauen-

felder and M. Hoelzle) 
 • Glacier Mass Balance Bulletin No. 9, 2004–2005 (W. Haeberli, M. Hoelzle and M. Zemp)

The present Glacier Mass Balance Bulletin reporting the results from the balance years 2005/2006 and 
2006/2007 is the tenth issue in a long-term series of publications. It is designed to speed up and facilitate access 
to information concerning glacier mass balances by reporting measured values from selected reference glaciers 
at 2-year intervals. The results of glacier mass balance measurements are made more easily understandable for 
non-specialists through the use of graphic illustrations in addition to numerical data. The Glacier Mass Balance 
Bulletin complements the publication series ‘Fluctuations of Glaciers’, where the full collection of digital 
data, including geodetic volume changes and the more numerous observations of glacier length variation, can 
be found. It should also be kept in mind that this fast and somewhat preliminary reporting of mass balance 
measurements may require slight correction and updating at a later time. Correspondingly corrected and 
updated information can be found in the Fluctuations of Glaciers series and are available in digital format 
from the WGMS.

Special thanks are extended to all those who have helped to build up the database which, despite its limitations, 
nevertheless remains an irreplaceable treasure of international snow and ice research, readily available to the 
scientific community as well as to a vast public.

Zurich, 2009

Wilfried Haeberli
Director, World Glacier Monitoring Service
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1   INTRODUCTION

The Glacier Mass Balance Bulletin reports on two main categories of data: basic information 
and detailed information. Basic information on specific net balance, cumulative specific balance, 
accumulation area ratio and equilibrium line altitude is given for 111 glaciers. Such information 
provides a regional overview. Additionally, detailed information such as balance maps, balance/
altitude diagrams, relationships between accumulation area ratios, equilibrium line altitudes and 
balance, as well as a short explanatory text with a photograph is presented for 16 glaciers. These 
ones were chosen because they had a long and complete series of direct glaciological measurements 
taken over many years. These long time series, based on high density networks of stakes and firn pits, 
are especially valuable for analyzing processes of mass and energy exchange at glacier/atmosphere 
interfaces and, hence, for interpreting climate/glacier relationships. In order to provide broader-
based information on glaciers from all regions worldwide, additional selected glaciers with shorter 
measurement series have been included.

1.1 GENERAL INFORMATION ON THE OBSERVED GLACIERS

The glaciers for which data is reported in the present bulletin are listed below (Table 1.1, Figure 1.1). 
Additionally, 20 glaciers with long measurement series of 15 years and more are listed.

Table 1.1:  General geographic information on the 111 glaciers for which basic information for the years 2006 and/or 2007 is reported. 

Additionally, 20 glaciers with long measument series of 15 or more years are listed. 

No. Glacier Name1) 1st/last survey2) Country Location Coordinates3) 
1 Bahía del Diablo 2002/2007 Antarctica Antarctic Peninsula 63.82 S 57.43 W

2 Martial Este 2001/2007 Argentina Andes Fueguinos 54.78 S 68.40 W

3 Filleckkees 1964/1980 Austria Eastern Alps 47.13 N 12.60 E
4 Goldbergkees 2001/2007 Austria Eastern Alps 47.03 N 12.47 E
5 Hintereisferner 1953/2007 Austria Eastern Alps 46.80 N 10.77 E
6 Jamtalferner 1989/2007 Austria Eastern Alps 46.87 N 10.17 E
7 Kesselwandferner 1953/2007 Austria Eastern Alps 46.83 N 10.79 E
8 Kleinfleisskees 2001/2007 Austria Eastern Alps 47.05 N 12.95 E
9 Pasterzenkees 2005/2007 Austria Eastern Alps 47.10 N 12.70 E
10 Sonnblickkees 1959/2007 Austria Eastern Alps 47.13 N 12.60 E
11 Vernagtferner 1965/2007 Austria Eastern Alps 46.88 N 10.82 E
12 Wurtenkees 1983/2007 Austria Eastern Alps 47.04 N 13.01 E

13 Chacaltaya 1992/2007 Bolivia Tropical Andes 16.35 S 68.12 W
14 Charquini Sur 2003/2007 Bolivia Tropical Andes 16.17 S 68.09 W
15 Zongo 1992/2007 Bolivia Tropical Andes 16.25 S 68.17 W

16 Baby Glacier 1960/2005 Canada High Arctic 79.43 N 90.97 W
17 Devon Ice Cap NW 1961/2007 Canada High Arctic 75.42 N 83.25 W
18 Helm 1975/2007 Canada Coast Mountains 49.97 N 123.00 W
19 Meighen Ice Cap 1976/2007 Canada High Arctic 79.95 N 99.13 W
20 Peyto 1966/2007 Canada Rocky Mountains 51.67 N 116.53 W
21 Place 1965/2007 Canada Coast Mountains 50.43 N 122.6 W
22 Sentinel 1966/1989 Canada Coast Mountains 49.90 N 122.98 W
23 White 1960/2007 Canada High Arctic 79.45 N 90.67 W
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24 Echaurren Norte 1976/2007 Chile Central Andes 33.58 S 70.13 W

25 Urumqihe S.No.1 1959/2007 China Tien Shan 43.08 N 86.82 E
Urumqihe E-Branch 1988/2007 China Tien Shan 43.08 N 86.82 E
Urumqihe W-Branch 1988/2007 China Tien Shan 43.08 N 86.82 E

26 La Conejera 2006/2007 Colombia Cordillera Central 4.48 N 75.22 W
27 Ritacuba Negro 2007/2007 Colombia Cordillera Oriental 6.45 N 72.3 W

28 Antizana 15 Alpha 1995/2007 Ecuador Eastern Cordillera  0.47 S 78.15 W

29 Argentière 1976/2007 France Western Alps 45.95 N 6.98 E
30 Gebroulaz 1995/2007 France Western Alps 45.30 N 6.63 E
31 Ossoue 2002/2007 France Pyrenees 42.77 N 0.14 W
32 Saint Sorlin 1957/2007 France Western Alps 45.17 N 6.15 E
33 Sarennes 1949/2007 France Western Alps 45.14 N 6.14 E

34 Mittivakkat 2006/2006 Greenland South-eastern Greenland 65.67 N 37.83 W

35 Brúarjökull 1994/2007 Iceland Eastern Iceland 64.67 N 16.17 W
36 Dyngjujökull 1994/2007 Iceland Central Northern Iceland 64.67 N 17.00 W
37 Eyjabakkajökull 1994/2007 Iceland Eastern Iceland 64.65 N 15.58 W
38 Hofsjökull E 1989/2005 Iceland Central Iceland 64.80 N 18.58 W
39 Hofsjökull N 1988/2006 Iceland Central Iceland 64.95 N 18.92 W
40 Hofsjökull SW 1990/2006 Iceland Central Iceland 64.72 N 19.05 W
41 Koeldukvislarjökull 1995/2007 Iceland Central Iceland 64.58 N 17.83 W
42 Langjökull S. Dome 1997/2007 Iceland Central Iceland 64.62 N 20.30 W
43 Tungnaárjökull 1994/2007 Iceland Central Iceland 64.32 N 18.07 W

44 Chhota Shigri 2003/2006 India Western Himalaya 32.20 N 77.50 E
45 Hamtah 2001/2006 India Himachal Pradesh 32.24 N 77.37 E

46 Calderone 2001/2007 Italy Apennin 42.47 N 13.62 E
47 Caresèr 4) 1967/2007 Italy Central Alps 46.45 N 10.70 E

Caresèr orientale 4) 2006/2007 Italy Central Alps 46.45 N 10.70 E
Caresèr occidentale 4) 2006/2007 Italy Central Alps 46.45 N 10.69 E

48 Ciardoney 1992/2007 Italy Western Alps 45.52 N 7.40 E
49 Fontana Bianca 1984/2007 Italy Central Alps 46.48 N 10.77 E
50 Lunga (Vedretta) 2004/2007 Italy Central Alps 46.47 N 10.62 E
51 Malavalle 2002/2007 Italy Central Alps 46.95 N 11.12 E
52 Pendente 1996/2007 Italy Central Alps 46.96 N 11.23 E

53 Hamaguri Yuki 5) 1981/2007 Japan Northern Japan Alps 36.60 N 137.62 E

54 Igly Tuyuksu 1976/1990 Kazakhstan Tien-Shan 43.00 N 77.10 E
55 Manshuk Mametova 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
56 Mayakovskiy 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
57 Molodezhniy 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
58 Ordzhonikidze 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
59 Partizan 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
60 Shumskiy 1967/1991 Kazakhstan Dzhungarskiy 45.08 N 80.23 E
61 Ts. Tuyuksuyskiy 1957/2007 Kazakhstan Tien Shan 43.05 N 77.08 E

No. Glacier Name1) 1st/last survey2) Country Location Coordinates3) 
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62 Visyachiy-1-2 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E
63 Zoya Kosmodemyansk. 1976/1990 Kazakhstan Tien Shan 43.00 N 77.10 E

64 Golubin 1969/1994 Kirghizstan Tien-Shan 42.47 N 74.50 E
65 Kara-Batkak 1957/1998 Kirghizstan Tien-Shan 42.10 N 78.30 E

66 Lewis 1979/1996 Kenya East Africa 0.15 S 37.30 E

67 Brewster 2005/2007 New Zealand Tititea Mt Aspiring NP 44.08 S 169.44 E

68 Ålfotbreen 1963/2007 Norway Western Norway 61.75 N 5.65 E
69 Austdalsbreen 1987/2007 Norway Western Norway 61.80 N 7.35 E
70 Austre Brøggerbreen 1967/2007 Norway Spitsbergen 78.88 N 11.83 E
71 Blomstølskardsbreen 2007/2007 Norway South-western Norway 60.00 N 6.40 E
72 Breidablikkbrea 1963/2007 Norway South-western Norway 60.10 N 6.40 E
73 Elisebreen 2006/2007 Norway Spitsbergen 78.64 N 12.25 E
74 Engabreen 1970/2007 Norway Northern Norway 66.65 N 13.85 E
75 Gråfjellsbrea 1964/2007 Norway South-western Norway 60.10 N 6.40 E
76 Gråsubreen 1962/2007 Norway Southern Norway 61.65 N 8.60 E
77 Hansbreen 1989/2007 Norway Spitsbergen 77.08 N 15.67 E
78 Hansebreen 1986/2007 Norway Western Norway 61.75 N 5.68 E
79 Hardangerjøkulen 1963/2007 Norway Central Norway 60.53 N 7.37 E
80 Hellstugubreen 1962/2007 Norway Southern Norway 61.57 N 8.43 E
81 Irenebreen 2002/2007 Norway Spitsbergen 78.65 N 12.10 E
82 Kongsvegen 1987/2007 Norway Spitsbergen 78.80 N 12.98 E
83 Langfjordjøkelen 1989/2007 Norway Northern Norway 70.12 N 21.77 E
84 Midtre Lovénbreen 1968/2007 Norway Spitsbergen 78.88 N 12.07 E
85 Nigardsbreen 1962/2007 Norway Western  Norway 61.72 N 7.13 E
86 Storbreen 1949/2007 Norway Central Norway 61.57 N 8.13 E
87 Svelgjabreen 2007/2007 Norway South-western Norway 60.00 N 6.40 E
88 Waldemarbreen 1995/2007 Norway Spitsbergen 78.67 N 12.00 E

89 Artesonraju 2005/2007 Peru Cordillera Blanca 8.95 S 77.62 W
90 Yanamarey 2005/2007 Peru Cordillera Blanca  9.65 S 77.27 W

91 Abramov 1968/1998 Tadjikistan Pamir Alai 39.63 N 71.60 E
92 Djankuat 1968/2007 Russia Northern Caucasus 43.20 N 42.77 E
93 Garabashi 1984/2007 Russia Northern Caucasus 43.30 N 42.47 E
94 Kozelskiy 1973/1997 Russia Kamchatka 53.23 N 158.82 E
95 Leviy Aktru 1977/2007 Russia Altay 50.08 N 87.72 E
96 Maliy Aktru 1962/2007 Russia Altay 50.08 N 87.75 E
97 No. 125 (Vodopadniy) 1977/2007 Russia Altay 50.10 N 87.70 E

98 Maladeta 1992/2007 Spain South Pyrenees 42.65 N 0.64 E

99 Mårmaglaciären 1990/2007 Sweden Northern Sweden 68.83 N 18.67 E
100 Rabots Glaciär 1982/2006 Sweden Northern Sweden 67.90 N 18.55 E
101 Riukojietna 1986/2007 Sweden Northern Sweden 68.08 N 18.08 E
102 Storglaciären 1946/2007 Sweden Northern Sweden 67.90 N 18.57 E
103 Tarfalaglaciären 1986/2007 Sweden Northern Sweden 67.93 N 18.65 E

No. Glacier Name1) 1st/last survey2) Country Location Coordinates3) 
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104 Basòdino 1992/2007 Switzerland Western Alps 46.42 N 8.48 E
105 Findelen 2005/2007 Switzerland Western Alps 46.00 N 7.87 E
106 Gries 1962/2007 Switzerland Western Alps 46.44 N 8.34 E
107 Limmern 1948/1984 Switzerland Western Alps 46.82 N 8.98 E
108 Plattalva 1948/1984 Switzerland Western Alps 46.83 N 8.98 E
109 Silvretta 1960/2007 Switzerland Eastern Alps 46.85 N 10.08 E

110 Blue Glacier 1956/1999 USA Washington 47.82 N 123.68 W
111 Columbia (2057) 1984/2007 USA North Cascades 47.97 N 121.35 W
112 Daniels 1984/2007 USA North Cascades 47.57 N 121.17 W
113 Easton 1990/2007 USA North Cascades 48.75 N 120.83 W
114 Emmons 2003/2007 USA Mt Rainier 46.85 N 121.72 W
115 Foss 1984/2007 USA North Cascades 47.55 N 121.20 W
116 Gulkana 1966/2007 USA Alaska Range 63.25 N 145.42 W
117 Ice Worm 1984/2007 USA North Cascades 47.55 N 121.17 W
118 Lemon Creek 1953/2007 USA Coast Mountains 58.38 N 134.40 W
119 Lower Curtis 1984/2007 USA North Cascades 48.83 N 121.62 W
120 Lynch 1984/2007 USA North Cascades 47.57 N 121.18 W
121 Nisqually 2003/2007 USA Mt Rainier 46.82 N 121.74 W
122 Noisy Creek 1993/2007 USA Washington 48.67 N 121.53 W
123 North Klawatti 1993/2007 USA Washington 48.57 N 121.12 W
124 Rainbow 1984/2007 USA North Cascades 48.80 N 121.77 W
125 Sandalee 1995/2007 USA Washington 48.42 N 120.80 W
126 Sholes 1990/2007 USA North Cascades 48.80 N 121.78 W
127 Silver 1993/2007 USA Washington 48.98 N 121.25 W
128 South Cascade 1953/2007 USA North Cascades 48.37 N 121.05 W
129 Taku 1946/2007 USA Coast Mountains 58.55 N 134.13 W
130 Wolverine 1966/2007 USA Kenai Mtns 60.40 N 148.92 W
131 Yawning 1984/2007 USA North Cascades 48.45 N 121.03 W

1) Countries and glaciers are listed in alphabetical order
2) Years of first and most recent survey available to the WGMS
3) Coordinates in decimal notation
4) In 2005, Caresèr broke into two parts: Caresèr Orientale and Caresèr Occidentale.
5) Perennial snowfield or glacieret 

No. Glacier Name1) 1st/last survey2) Country Location Coordinates3) 
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2   BASIC INFORMATION

Specific net balance (b), equilibrium line altitude (ELA) and accumulation area ratio (AAR) from 
the balance years 2005/06 and 2006/07 are presented in Part 2.1. ELAs above and below the glacier 
elevation range are marked with > and <, respectively. In these cases, the ELA value given is supposed 
to be the glacier max/min elevation. The AAR values are given as integer values only. 

Values for ELA0 and AAR0 are also given. They represent the calculated ELA and AAR values for 
a zero net balance, i.e., a hypothetical steady state. All values since the beginning of mass balance 
measurement-taking were used for this calculation on each glacier. Minimum sample size for 
regression was defined as six ELA or AAR values. In extreme years some of the observed glaciers can 
become entirely ablation or accumulation areas. Corresponding AAR values of 0 or 100 % as well as 
ELA values outside the altitude range of the observed glaciers were excluded from the calculation of 
AAR0 and ELA0 values. For the glaciers with detailed information, the corresponding graphs (AAR 
and ELA vs. specific net balance) are given in Chapter 3.

The graphs in the second part present the development of cumulative specific net balance over the 
whole observation period for each glacier where three or more net balances were reported and the 
years 2005/06 or 2006/07 are included. For each country, the cumulative balances are plotted in 
a single graph. For countries with more than six glaciers, the cumulative balances were plotted in 
several graphs, which were split into groups of glaciers from the same region, similar glacier types 
or alphabetically separated groups. Some of the time series have data gaps and hence have to be 
interpreted with care. In these cases, the overall ice loss cannot be derived from the cumulative specific 
net balance graphs and has to be determined by other means, such as geodetic or photogrammetric 
methods. Generally, for glaciers with data gaps longer than one-fifth of the measurement time series, 
the cumulative balance has been plotted for the measurements taken after the most recent data gap 
only.

2.1 SUMMARY TABLE (NET BALANCE, ELA, ELA0, AAR, AAR0)

Name Country b06 

[mm]

b07 

[mm]

ELA06

[m a.s.l.]

ELA07

[m a.s.l.]

ELA0 

[m a.s.l.]

AAR06

 [%]

AAR07

 [%]

AAR0

 [%]

Bahía del Diablo Antarctica 580 80 445 360 366 31 49 48

Martial Este Argentina 513 99 1096 1072 — 38 62 —

Goldbergkees Austria 1077 1106 3020 3000 — 7 24 45
Hintereisferner Austria 1516 1797 > 3750 > 3750 2922 11 0 66

Jamtalferner Austria 1293 1438 > 3120 > 3120 2760 8 6 58
Kesselwandferner Austria 617 837 3233 3280 3114 33 22 69
Kleinfleisskees Austria 655 946 3070 3020 2856 10 23 70

Pasterzenkees Austria 1232 1355 3000 3025 — 47 49 —
Sonnblickkees Austria 621 2175 2860 2990 2740 29 2 59
Vernagtferner Austria 882 966 3261 3281 3080 25 19 66
Wurtenkees Austria 778 1200 3120 > 3150 2905 17 4 36

Chacaltaya Bolivia 1199 1652 5383 > 5400 — 0 0 —
Charquini Sur Bolivia 376 482 5132 5157 — 50 38 —
Zongo Bolivia 197 173 5191 5271 5231 71 62 67



2 Basic Information

7

Devon Ice Cap NW Canada 242 291 1340 1296 1004 — — 71 1)

Helm Canada 2750 210 > 2150 2007 2000 0 12 37
Meighen Ice Cap Canada 8 518 — — — — — —
Peyto Canada 1650 1850 3090 3010 2612 10 40 52
Place Canada 1900 150 > 2610 2180 2085 0 26 49
White Canada 93 818 1097 1347 910 61 25 71

Echaurren Norte Chile + 560 130 — — — — — —

Urumqihe S. No.1 China 774 642 4087 4074 4022 28 31 56
Urumqihe E-Branch China 920 696 4086 4060 3949 19 28 65
Urumqihe W-Branch China 506 542 4089 4100 4024 43 36 64

La Conejera Colombia 1935 996 — — — — — —
Ritacuba Negro Colombia — 2227 — — — — — —

Antizana 15 Alpha Ecuador 452 658 5150 5170 5045 54 53 70

Argentière France 1420 590 — — — — — —
Gebroulaz France 1000 910 — — — — — —
Ossoue France 2710 1380 > 3200 > 3200 — 0 0 —
Saint Sorlin France 1440 2250 — — 2863 — — —
Sarennes France 2380 2520 — — — — — —

Mittivakkat Greenland 590 — — — — — — —

Brúarjökull Iceland 790 536 — — 1183 — — 60
Dyngjujökull Iceland 353 + 95 — — — — — —
Eyjabakkajökull Iceland 1425 636 — — 1074 — — 56
Hofsjökull N Iceland 510 — 1325 — 1264 41 — 50
Hofsjökull SW Iceland 610 — 1330 — 1266 50 — 46
Koeldukvislarjökull Iceland 402 342 — — 1289 — — 60
Langjökull S. Dome Iceland 1080 1412 — — 975 — — 57
Tungnaárjökull Iceland 1569 997 — — 1147 — — 61

Chhota Shigri India 1413 — 5185 — — 29 — —
Hamtah India 790 — — — — 12 — —

Calderone Italy + 1090 2320 < 2630 > 2830 — 100 0 —
Caresèr 2) Italy 2093 2745 > 3279 > 3279 3094 0 0 44
Caresèr orientale 2) Italy 2117 2769 > 3277 > 3277 — 0 0 —
Caresèr occidentale 2) Italy 1911 2558 > 3279 > 3279 — 0 0 —
Ciardoney Italy 2099 1490 > 3150 > 3150 2977 0 0 57
Fontana Bianca Italy 1753 1607 > 3355 > 3355 3255 0 0 55
Lunga (Vedretta) Italy 1456 1616 3295 > 3390 — 10 0 —
Malavalle Italy 1327 1338 3200 3224 2930 12 9 56
Pendente Italy 1740 2154 > 3075 > 3075 2822 0 0 45

Hamaguri Yuki 3) Japan + 3289 609 — — — — — —

Ts. Tuyuksuyskiy Kazakhstan 969 915 3980 3885 3746 22 34 52

Brewster New Zealand + 282 + 297 1893 1899 — 72 67 —

Ålfotbreen Norway 3190 + 1270 > 1382 1000 1199 0 97 57
Austdalsbreen Norway 2060 + 180 > 1757 1405 1423 0 75 65
Austre Brøggerbreen Norway 730 460 458 427 282 5 10 52
Blomstølskardsbreen Norway — + 1880 — 1230 — — 89 —
Breidablikkbrea Norway 2950 + 360 > 1659 1410 1473 0 68 —
Elisebreen Norway 726 542 398 392 — 40 40 —
Engabreen Norway 1360 + 1100 1325 1035 1157 37 84 60
Gråfjellsbrea Norway 3150 + 750 > 1659 1395 1456 0 80 —
Gråsubreen Norway 2080 710 > 2290 2265 2080 0 1 41
Hansbreen Norway + 93 4 300 330 301 61 54 55

Name Country b06 

[mm]

b07 

[mm]

ELA06

[m a.s.l.]

ELA07

[m a.s.l.]

ELA0 

[m a.s.l.]

AAR06

 [%]

AAR07

 [%]

AAR0

 [%]
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Name Country b06 

[mm]

b07 

[mm]

ELA06

[m a.s.l.]

ELA07

[m a.s.l.]

ELA0 

[m a.s.l.]

AAR06

 [%]

AAR07 

[%]

AAR0 

[%]

Hansebreen Norway 3980 + 845 > 1327 1042 1158 0 89 56
Hardangerjøkulen Norway 2220 + 1170 > 1860 1570 1678 0 85 68
Hellstugubreen Norway 2010 670 > 2210 1975 1838 0 25 58
Irenebreen Norway 822 695 422 454 263 24 20 56
Kongsvegen Norway + 20 90 530 555 537 46 39 48
Langfjordjøkelen Norway 2410 810 > 1050 870 716 0 42 64
Midtre Lovénbreen Norway 480 250 415 376 296 14 26 57
Nigardsbreen Norway 1399 + 1047 1850 1320 1558 4 91 60
Storbreen Norway 2150 390 > 2100 1835 1717 0 30 59
Svelgjabreen Norway — + 1350 — 1205 — — 78 —
Waldemarbreen Norway 747 771 425 428 270 16 13 47

Artesonraju Peru 1679 1522 — — — — — —
Yanamarey Peru 1712 1532 4888 4868 — 27 36 —

Djankuat Russia 800 2010 3290 3500 3189 42 16 56
Garabashi Russia 656 633 3950 3910 3794 40 42 60
Leviy Aktru Russia 190 320 3230 3250 3161 58 57 61
Maliy Aktru Russia 140 300 3250 3270 3154 60 55 70
No. 125 (Vodopadniy) Russia 260 270 3240 3240 3201 67 67 69

Maladeta Spain 1787 947 > 3200 > 3200 3059 0 0 40

Mårmaglaciären Sweden 1650 530 1655 1640 1599 11 13 34
Rabots Glaciär Sweden 1630 — 1505 — 1372 19 — 51
Riukojietna Sweden 1400 960 > 1450 > 1450 1332 0 0 55
Storglaciären Sweden 1720 + 410 1615 1480 1463 17 50 45
Tarfalaglaciären Sweden 2530 + 210 > 1790 1475 — 0 73 —

Basòdino Switzerland 2501 902 > 3300 3100 2878 0 5 50
Findelen Switzerland 1200 200 3350 3200 — 40 62 —
Gries 4) Switzerland 1995 1473 3325 3324 2818 2 2 56
Silvretta 4) Switzerland 1449 916 3071 2877 2760 2 21 55

Columbia (2057) USA 980 370 1630 1575 — 40 60 69
Daniels USA 1250 + 120 — — — 34 62 69
Easton USA 790 + 260 2125 2075 — 50 70 —
Emmons USA 940 430 2745 2539 — 40 51 —
Foss USA 1020 380 — — — 36 54 65
Gulkana USA 330 1250 1732 1809 1726 64 53 63
Ice Worm USA 1350 620 — — — 20 48 70
Lemon Creek USA 170 + 150 1025 1000 1009 68 72 —
Lower Curtis USA 1060 400 1710 1650 — 40 60 64
Lynch USA 1050 + 70 — — — 42 70 69
Nisqually USA 760 1400 3000 3000 — 30 29 —
Noisy Creek USA 320 360 1889 1825 1806 4 8 50
North Klawatti USA 1140 740 2300 2165 2101 18 54 69
Rainbow USA 610 + 290 1730 1650 — 46 76 67
Sandalee USA 400 60 2210 2160 — 40 60 —
Sholes USA 710 210 — — — 44 72 —
Silver USA 1010 650 2565 2560 2298 6 8 47
South Cascade 5) USA 1620 210 > 2125 1880 1899 < 10 60 53
Taku USA + 230 + 480 975 930 976 82 84 —
Wolverine USA 760 840 1188 1199 1148 62 61 64
Yawning USA 930 130 — — — 54 70 —

1) Based on AAR values from 1961-1980.
2) In 2005, Caresèr broke into two parts: Caresèr Orientale and Caresèr Occidentale.
3) Perennial snowfield or glacieret
4) The direct glaciological mass balance series was compared with the geodetic mass balance, and values of Silvretta from previous years have been 

adjusted (cf. Huss et al. 2009).
5) Preliminary data, subject to revision.
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2.2 CUMULATIVE SPECIFIC NET BALANCE GRAPHS 

Notes:
 •  missing values are marked by gaps in the plotted data series with graphs restarting with the value of the previous available data point
 •  y-axis are scaled according to the data range of the cumulative net balance graph
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3   DETAILED INFORMATION

More detailed information about selected glaciers in various mountain ranges – with ongoing direct 
glaciological mass balance measurements – is presented here, in addition to the basic information 
contained in the previous chapter. In order to facilitate comparison between the individual glaciers, 
the submitted material (text, maps, graphs and tables) was standardized and rearranged. 

The text gives general information on the glacier followed by brief comments on the two reported 
balance years. General information concerns basic geographic, geometric, climatic and glaciological 
characteristics of the observed glacier which may help with the interpretation of climate/glacier 
relationships. An oblique photograph showing the glacier is included.

Three maps are presented for each glacier: the first one, a topographic map, shows the stake, snow 
pit and snow probing network. This network is basically the same from one year to the next on most 
glaciers. In cases of differences between the two reported years, the second was chosen, i.e., the 
network from the year 2006/07. The second and third maps are balance maps from the reported years, 
illustrating the pattern of ablation and accumulation. The accuracy of such balance maps depends 
on the density of the observation network, the complexity of the mass balance distribution and the 
experience of the local investigators.

A graph of net mass balance versus altitude is given for both reported years, overlain with the 
corresponding glacier hypsography. The relationship between mass balance and altitude – the mass 
balance gradient – is an important parameter in climate/glacier relationships and represents the 
climatic sensitivity of a glacier. It constitutes the main forcing function of glacier flow over long 
time intervals. Therefore, the mass balance gradient near the equilibrium line is often called the 
‘activity index’ of a glacier. The glacier hypsography reveals the glacier elevation bands that are most 
influential for the specific net balance, and indicates how the specific net balance changes with a shift 
of the ELA. Some of the elevation bands are irregular, especially the lowest and highests values. The 
elevation bands represent the submitted altitude intervals.

The last two graphs show the relationship between the specific net balance and the accumulation area 
ratio (AAR) and the equilibrium line altitude (ELA) for the whole observation period. The regression 
equation is given at the top of both diagrams. The AAR regression equation is calculated using integer 
values only (in percent). AAR values of 0 or 100 % as well as corresponding ELA values outside the 
altitude range of the observed glaciers were excluded from the regression analysis. Such regressions 
were used to determine the AAR0 and ELA0 values (cf. Chapter 2). The points from the two reported 
balance years (2005/06 and 2006/07) are marked in black. Minimum sample size for regression was 
defined as 6 ELA or AAR values.
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3.1 BAHÍA DEL DIABLO (ANTARCTICA/A. PENINSULA)

COORDINATES: 63.82 S / 57.43 W 

Photo taken by P. Skvarca on 1st of March 2005. 

This polythermal outlet-type glacier is located on Vega Island, north-eastern side of the Antarctic 
Peninsula. The glacier is exposed to the north-east, covers an area of 14.3 km2 and extends from 
an altitude of 630 m to 75 m a.s.l. The mean annual air temperature at the equilibrium line around 
400 m a.s.l. ranges between 7 and 8 °C. The snout of the glacier overrides an ice-cored moraine 
over a periglacial plain of continuous permafrost.

Detailed mass balance measurements of this glacier began in austral summer 1999/00. A simplified 
version of combined stratigraphic-annual mass-balance method is applied because the glacier can be 
visited only once a year. Despite  the relatively low mean  annual temperature of 5.8 °C, the balance 
year 2005/06 resulted in 580 mm  w.e., the most negative mass budget recorded since the initiation 
of measurements. This lowest value is probably due to a very high mean summer air temperature of  
+1.6 °C combined with strong north-westerly warm katabatic winds, which enhanced melting. By 
contrast, the net budget of only 80 mm w.e. for balance year 2006/07 figures among the lowest in 
the record because of low mean summer temperature of +0.2 °C, yielding only 96 melt-days. The 
additional two years of detailed mass balance data further confirm a strong correlation existing in this 
region between the annual net balance and the mean summer air temperature.
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3.1.1 Topography and observation network
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3.1.2 Net balance maps 2005/2006 and 2006/2007
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3.1.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.1.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.2 MARTIAL ESTE (ARGENTINA/ANDES FUEGUINOS)

COORDINATES: 54.78 S / 68.40 W 

Photo taken by R. Iturraspe in February 2006.

The Martial Este is one of the four small glaciers that remain in the well-defined glacial cirque of the 
Cordon Martial (1319 m a.s.l at Mt Martial) very close to Ushuaia city and to the Beagle channel. 
Glacier runoff contributes to the water supply of this city. Total ice area on this cirque reaches 0.33 km2. 
The Martial Este glacier (the body at the right of the photo) has a surface area of 0.1 km2 that extends 
from 1180 m to 970 m a.s.l. with a medium slope of 29° and south-east exposition. It receives less 
direct solar radiation than the rest of the glaciers on the cirque. Mean annual air temperature at the 
equilibrium line is 1.5 °C and the average precipitation amounts to 1300 mm, distributed over 
the whole year. The rain regime has no dry season. The hydrological cycle starts in April and the 
maximum accumulation on the glacier is reached in October or November. Since the Little Ice Age 
these glaciers have lost 75 % of their total area. From 1984 to 1998 vertical thinning at the Martial 
Este Glacier was 7.0 m (450 mm w.e. a-1) based on topographic surveys. 

During the hydrological years 2005/06 and 2006/07, the net balance of the Martial Este glacier 
was more stable than observed in the previous biannual period. In the first year, the deficit was 

510 mm w.e., which is close to the computed average from 1984. Precipitation in 2006/07 was the 
highest in the last 25 years; however that represents just 21 % of the historical average. Snowfalls and 
cold conditions during the late spring also favored a positive balance, but dry and warm conditions in 
January and February caused rapid melting. However, the balance was weakly positive (+ 99 mm w.e.) 
for the first time since 2000/01. 
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3.2.1 Topography and observation network
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3.2.2 Net balance maps 2005/2006 and 2006/2007
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3.2.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.2.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.3 HINTEREISFERNER (AUSTRIA/EASTERN ALPS)

COORDINATES: 46.80 N / 10.77 W 

Photo taken by A. Lambrecht on 12th of September 2006.

The mass balance of Hintereisferner has been measured with the direct glaciological method 
since 1952/53. Hintereisferner is a valley glacier which had several tributary glaciers in 1953. In 
the meantime, most of these tributary glaciers have lost connection to the main tongue. The last to 
separate so far was Langtaufererjochferner in 2000. The glacier area decreased from 10.24 km2 in 
1953 to 7.40 km2 in 2006 and 7.21 km2 in 2007. The highest point of Hintereisferner is the Weißkugel/
Pala Bianca peak with an altitude of 3739 m a.s.l. The tongue is located in a north-east orientated 
valley, the firn area faces north, east and south. The lowest point was 2350 m a.s.l. in 1953 and 
2750 m a.s.l. in 2007. The ice thickness losses between 1953 and 2007 exceeded 160 m on parts 
of the glacier tongue, but were only a few meters in parts of the firn area. In the mass balance year 
2002/03 the topographic basis was changed from the DEM of the glacier inventory dating from 
1997 to the airborne laser scan DEM of October 2001. In addition to the annual geodetic surveys, 
several airborne Laser Scan DEMs were compiled between 2001 and 2008. The mean annual air 
temperature at the ELA0 is about -4 °C, as estimated from the temperature measurements at the Vent 
climate station (1906 2005; 1906 m a.s.l.). A mean annual precipitation of 1374 mm was measured 
at a nearby totalizer (1963 2008; 2970 m a.s.l.). 

In 2005/06 the mean air temperature was exactly the long term mean, in 2006/07 it was 3.7 °C. The 
mean annual lapse rate is assumed to be 0.0057 °C m-1. The specific mass balance was 1516 mm w.e. 
in 2005/06 and 1798 mm w.e. in 2006/07. The ELA was above the summits in both hydrological 
years.



Glacier Mass Balance Bulletin, No. 10, 2009

24

3.3.1 Topography and observation network
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3.3.2 Net balance maps 2005/2006 and 2006/2007
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3.3.3 Net balance versus altitude 2005/2006 and 2006/2007

3.3.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period
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3.4 ZONGO (BOLIVIA/TROPICAL ANDES)

COORDINATES: 16.25 S / 68.17 W 

Photo provided by P. Ginot in 2007.                                                                                                                                                                                                

Zongo is a small valley glacier located north-east of La Paz, at the headwaters of a large system of 
power plants supplying the city. It is a glacier 2.2 km long, between 6000 m and 4900 m a.s.l., with an 
surface area of 1.9 km2. Exposure is to the south in the upper part and to the east at the lower tongue. 
The average annual air temperature is 1.5 °C at the ELA (5250 m a.s.l.) and an average annual 
rainfall of 900 mm (± 150 mm) measured at 4770 m a.s.l. The region has a climate characterized by a 
dry season and a wet season. The latter occurs in the summer when the ablation reaches its maximum 
from November to February, with the highest precipitation period from January to March. Like all 
glaciers in the region, it has generally presented yearly negative mass balances, with few exceptions, 
with the greatest loss occurring during the 1997–1998 El Niño event (approximately 2000 mm w.e.). 
The few periods of light positive mass balances have coincided with La Niña events.

The 2005/06 period presents a slightly negative mass balance ( 197 mm w.e.). The ENSO index of the 
observation period was characterized by a weak positive anomaly in the Pacific (Niño phenomenon) 
at the beginning and negative anomaly (Niña phenomenon) towards the end of the hydrological year. 
The period 2006/07 presented an almost balanced mass balance ( 173 mm w.e.), due to a slightly 
more humid period with precipitation 7 % above normal.
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3.4.1 Topography and observation network
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3.4.2 Net balance maps 2005/2006 and 2006/2007
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3.4.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.4.4 Accumulation area ratio (AAR ) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.5 WHITE (CANADA/HIGH ARCTIC)

COORDINATES: 79.45 N / 90.67 W 

Aerial view of White Glacier taken on 2 July, 2008. Photo by J. Alean.

White Glacier is a valley glacier in the Expedition Fiord area of Axel Heiberg Island, Nunavut.  It 
extends in elevation from 1782 m to 85 m a.s.l. and at present occupies 39.4 km2, having shrunk 
by gradual retreat of its terminus from an extent of 40.2 km2 in 1960. Sea level temperature in the 
Expedition Fiord area averages about 20 °C, but the glacier is known to have a bed which is partly 
unfrozen, at least beneath the valley tongue; ice thickness is typically 200 m, but reaches or exceeds 
400 m. Annual precipitation at sea level is very low, about 100 mm, although annual accumulation at 
higher altitudes is greater. Annual ablation at the terminus of White Glacier ranges between 2000 and 
4000 mm w.e. a-1. There is now evidence that the retreat of the terminus, previously about 5 m a-1, 
is decelerating. However, the advance of Thompson Glacier continues. The terminuses of the two 
glaciers have been in contact since at least the time of the earliest photographs in 1948, but, while the 
two terminuses remain distinguishable, White Glacier has become a tributary of Thompson Glacier.
The cumulative mass balance of White Glacier from 1959/60 to 2006/07, with due allowance for three 
missing years, is 7280 mm w.e. The mass balance for 2005/06, at 93 mm w.e., was slightly negative, 
but not distinguishable from a state of equilibrium given the uncertainty (±200 to 250 mm w.e.) of 
the measurement. The mass balance normal for 1960–1991 is 95 mm w.e., also slightly negative but 
in this case significantly so because it is an average of 29 annual measurements. In contrast to that 
of 2005/06, the balance for 2006/07, 818 mm w.e., was the most negative ever measured, although 
it is not statistically distinct from the previous record of 781 mm w.e. in 1961/62. 2006/07 was the 
first balance year in the history of the measurement programme for which missing stake corrections 
were necessary. For example, in the 200–300 m elevation band, five out of seven stakes melted out. 
This may be an omen.
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3.5.1 Topography and observation network
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3.5.2 Net balance maps 2005/2006 and 2006/2007
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3.5.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.5.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.6 URUMQIHE S. NO 1 (CHINA/TIEN SHAN)

COORDINATES: 43.08 N / 86.82 E 

Photo taken by T. Bolch, 2006.

Due to continued glacier shrinkage, the two branches of the former glacier have become two separated 
small glaciers but are still called East and West branch of Glacier No. 1. The East branch has a total 
area of 1.1 km2, the highest and lowest points are at 4267 m and 3742 m a.s.l.; the West branch has 
a total area of 0.7 km2, the highest and lowest points are at 4486 m and 3825 m a.s.l. Average annual 
precipitation measured at the nearby meteorological station at 3539 m a.s.l. is 400 to 500 mm and 
600 to 700 mm at the glacier. Mean annual air temperature at the equilibrium line (4022 m a.s.l. 
for balance years) is estimated at 8.0 to 9.0 °C. The predominantly cold glacier is surrounded by 
continuous permafrost but reaches melting temperatures over wide areas of the bed. Accumulation 
and ablation both take place primarily during the warm season and the formation of superimposed 
ice on this continental-type glacier is important. Since August 2001, a 1:5000 topographic map of the 
glacier and its forefield has been available for further analysis. 

In 2005/06, the mass balance was 920 mm w.e. for the East branch and 506 mm w.e. for the West 
branch. In 2006/07 , the corresponding values are 696 mm w.e. for the East branch and 542 mm w.e. 
for the West branch. The calculated mass balance for the entire glacier was 774 mm w.e. in 2005/06 
and –642 mm w.e. in 2006/07. 
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3.6.1 Topography and observation network
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3.6.2 Net balance maps 2005/2006 and 2006/2007
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3.6.3 Net balance versus altitude (2005/2006 and 2006/2007) of the two branches

3.6.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.7 ANTIZANA 15 ALPHA (ECUADOR/EASTERN CORDILLERA)

COORDINATES: 0.47 S / 78.15 W

Photo taken by B. Cáceres, January 2008.

The 15 Alpha glacier of Antizana (5760 m – 4852 m a.s.l., 0.27 km2) is the only one situated near the 
equator in South America providing regular mass balance information to the scientific community. 
The surface elevations of the glacier have been determined using aerial photogrammetry from the 
years 1956 and 1997. The first stakes were placed in 1994 to undertake direct measurements in the 
terminal zone of the glacier. The main exposition of the glacier is to the west and its length is 1.8 km. 
During the last thirteen years a mean annual average precipitation of 925 mm a-1 was measured. In 
the year 2006/07 a mean annual air temperature of 1.2 °C was recorded at the nearby meteorological 
station (4820 m a.s.l.), with an annual average of  1.5 °C since 2001. 

The 15 Alpha glacier had an average annual mass balance of 615 mm w.e. a-1 since 1995. The 
interannual variation is highly variable. Negative balances were observed during most of the years. 
Negative records were measured in the years 1995 to 2007. The negative mass balance series was 
interrupted by two positive balance years in 1999 and 2000. The years 2005/06 and 2006/07 had a 
negative balance with values of 452 mm w.e. and 658 mm w.e., respectively. The variability of the 
ENSO (El Niño Southern Oscillation) has been an important factor affecting the climatic conditions 
and their resulting influence on the mass balance evolution of the Ecuadorian glaciers. Years with 
favorable conditions for the Ecuadorian glaciers seem to be related to La Niña (cold) events, and for 
unfavorable conditions to El Niño (warm) events.
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Antizana 15 Alpha (ECUADOR)

3.7.1 Topography and observation network
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Antizana 15 Alpha (ECUADOR)

3.7.2 Net balance maps 2005/2006 and 2006/2007
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3.7.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.7.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.8 CARESÈR (ITALY/CENTRAL ALPS)

COORDINATES: 46.45 N /  10.70 E

Photo taken by L. Carturan on 31st of August 2007.                        

Caresèr Glacier is located in the eastern sector of Ortles-Cevedale group (European Alps, Italy). It 
occupies an area of 2.4 km2 and extends from 3279 m to 2869 m a.s.l. The surface is mainly exposed 
to the south and is quite flat. 75 % of the glacier area lies between 2900 m and 3100 m a.s.l. and the 
median altitude is 3069 m a.s.l. The mean annual air temperature at this elevation is about 3 to 4 °C 
and precipitation averages 1450 mm, of which 80 % falls as snow. The mass balance investigations on 
Caresèr Glacier began in 1967 and extend until present without interruption. The glacier mass balance 
was near to equilibrium until 1980, but since then it has shown strong mass losses. The mean value 
of the annual mass balance was 1200 mm w.e. from 1981 to 2002, but decreased to 2350 mm w.e. 
from 2003 to 2007. This is a result of both warmer ablation seasons and positive feedbacks (albedo 
and surface lowering). The repeated negative mass balances are causing huge changes in the glacier 
morphology, with widespread bedrock emersion and rapid fragmentation. The most remarkable event 
was the detachment of the western portion of the glacier from the main ice body in 2005.

During the hydrological years 2005/06 and 2006/07 the mass balance of Caresèr glacier was strongly 
negative, reaching the 4th and the 2nd worst values of the entire series of observations with 2093 and 

2745 mm w.e., respectively. Warm and long ablation seasons played a dominant role in the observed 
balance behaviour, but in 2006/07 the winter precipitation was also extremely scarce (40 % of the 
long-term mean), and ice ablation started abnormally by the end of June.
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Caresèr (ITALY)

3.8.1 Topography and observation network
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Caresèr (ITALY)

3.8.2 Net balance maps 2005/2006 and 2006/2007
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Caresèr (ITALY)

3.8.3 Net balance versus altitude (2005/2006 and 2006/2007) for both parts of the glacier

3.8.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.9 MALAVALLE (ITALY/CENTRAL ALPS)

COORDINATES: 46.95 N / 11.12 E 

Photo taken by M. Kuhn, 22nd September 2007. 

The Malavalle Glacier (Übeltalferner) is the widest in the Breonie Alps, an alpine ridge in the Stubai 
Alps lying in the Italian territory along the Austrian border. The head of the Val Ridanna is shaped 
like a wide bowl with several levels with different-shaped cirques presenting varying accumulation 
conditions, depending on aspect and slope. The glacier arms extend from all these cirques and flow 
into the wide central stream at about 2900 m a.s.l. The front moves down to 2530 m a.s.l. The left 
side of the glacier stretches along the moraine, which developed between the end of the 18th and the 
beginning of the 19th century, and ends at a small proglacial lake at about 2500 m a.s.l. The main 
stream (Fernerbach) originates at the right border of the front, which is on a step above a 300 m 
drop.

The mass balance measurements began in the year 2001/02, using the fixed date method. In the 
first three years, the measurements were done annually, and since 2004/05 they have been done 
on a seasonal basis. In the years 2005/06 and 2006/07, severe mass losses of 1322 mm w.e. and 

1358 mm w.e. were measured, respectively. The average mass loss over the six-year period was 
1010 mm w.e., resulting in a total ice loss of 6058 mm w.e.. The continuous retreat of the glacier 

affects both its extension and volume. At the end of the summer season, a new topographic survey 
was carried out by GPS in order to update the glacial border in the front area, where a 0.4 km2  
tributary glacier is expected to detach in the near future.
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Malavalle (ITALY)

3.9.1 Topography and observation network
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Malavalle (ITALY)

3.9.2 Net balance maps 2005/2006 and 2006/2007
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Malavalle (ITALY)

3.9.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.9.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.10 TSENTRALNIY TUYUKSUYSKIY (KAZAKHSTAN/TIEN SHAN)

COORDINATES: 43.05 N / 77.08 E 

Photo taken by V.P. Blagoveshensky in July 2007.

The valley-type glacier in the Zailiyskiy Alatau Range of Kazakh Tien Shan is also called the Tuyuksu 
Glacier. It extends from 4200 m to 3425 m a.s.l. and has a surface area of 2.51 km2 (including 
debris-covered ice) with exposure to the north. Mean annual air temperature at the equilibrium line 
of the glacier (around 3980 m a.s.l. in 2006 and 3885 m a.s.l. in 2007 for balanced conditions) is 
between 6 to –7 ºC. The summer precipitation equals 40 % of the annual sum. A characteristic 
feature of these highly continental climatic conditions is the stable winter anticyclones. The glacier 
is considered to be cold to polythermal and surrounded by continuous permafrost.  

Average annual precipitation as measured with a great number of precipitation gauges for the balance 
year 2005/06 is equal to 931 mm and 1074 mm for the balance year 2006/07. The summer season of 
2006 was 0.4 ºC warmer than the average value for the period 1971/72–2005/06, while precipitation 
was equal to average. August was 1.8 ºC warmer than the average value. As a result of these conditions 
the glacier mass balance in 2006 was 969 mm w.e. The summer season of 2007 was 1.1 °C warmer 
than the average value for the period 1972–2007, while precipitation was 70 mm more than average. 
As a result of these conditions the glacier mass balance in 2007 was 915 mm w.e.
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3.10.1 Topography and observation network

Tsentralniy Tuyuksuyskiy (KAZAKHSTAN)
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3.10.2 Net balance maps 2005/2006 and 2006/2007

Tsentralniy Tuyuksuyskiy (KAZAKHSTAN)
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3.10.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.10.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.11 BREWSTER (NEW ZEALAND/TITITEA MT ASPIRING NP)

COORDINATES: 44.08 S / 169.44 E 

Photo taken by A. Willsman (Glacier Snowline Survey, NIWA), 14 March 2008.

Brewster Glacier is a temperate glacier on the Main Divide of the Southern Alps of New Zealand 
and lies south of Mt Brewster (2515 m a.s.l.). The glacier has an area of about 2.5 km2, is about 
2.5 km long, and extends over an elevation range of 730 m, from 2390 m to 1660 m a.s.l. The major 
part of the glacier, up to about 2000 m a.s.l., faces south with an average slope of 11°, and the top 
400 m have a south-westerly aspect with a mean slope of 31°. The maximum ice thickness is about 
150 m, and a few hundred meters up the snout there is a bed overdeepening. On the western margin of 
the glacier the valley walls are not clearly confined. The glacier surface is very clean and there is little 
sedimentation in the glacier forefield. The exposed bedrock is polished and displays abrasion marks 
from the glacier. These observations, the very few debris delivering rockwalls surrounding Brewster 
Glacier and very low-frequency measurements by Thiel (1986) suggest minor subglacial sediments, 
with eroding rather than sedimenting glacier activities. Brewster Glacier is a maritime glacier type 
with an annual mean precipitation (1951–1980) between 3200–4800 mm and a mean annual air 
temperature at the ELA (ca. 1900 m a.s.l. for a balanced year) of about 1 °C.

In the years 2005/06 and 2006/07, the mass balances were slightly positive (+282 mm w.e. and 
+297 mm w.e., respectively) with ELAs at similar altitudes (1893 m a.s.l. and 1899 m a.s.l.). More 
knowledge about the mass balance above 2000 m a.s.l. and new glacier outlines are needed. Updated 
glacier outlines would resolve the discrepancies between the mentioned altitude range and the 
topographical map.
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3.11.1 Topography and observation network
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Brewster Glacier (NEW ZEALAND)

3.11.2 Net balance maps 2005/2006 and 2006/2007
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Brewster Glacier (NEW ZEALAND)

3.11.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.11.4 Accumulation area ratio (AAR ) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.12 NIGARDSBREEN (NORWAY/WEST NORWAY)

COORDINATES: 61.72 N / 07.13 E 

Photo taken by B. Kjøllmoen, 31st of July 2002.

Nigardsbreen is one of the largest outlet glaciers (47.8 km2) of the Jostedalsbreen Ice Cap in Southern 
Norway and reaches from 1960 m to 320 m a.s.l. Its wide accumulation area discharges into a narrow 
tongue, both being generally exposed to the south-east. The glacier is assumed to be entirely temperate 
and the periglacial area to be predominantly free of permafrost. Average annual precipitation for the 
1961–1990 period is 1380 mm and mean annual air temperature at the equilibrium line is estimated 
at 3 °C. Since the beginning of detailed mass balance measurements in 1962, glacier thickness has 
greatly increased, especially after 1988.

In 2005/06, the winter balance was +1750 mm w.e. (73 % of the mean value for the total observation 
period) and summer balance was 3150 mm w.e. (160 % of the average 1962–2005). The resulting 
mass balance is 1400 mm w.e. and the calculated equilibrium line altitude is about 1850 m a.s.l. In 
2006/07, the winter balance was +3090 mm w.e. (131 % of the average for the period 1962–2006) 
and summer balance was 2045 mm w.e. (103 % of the long-term mean). The resulting mass balance 
was +1045 mm w.e. The calculated equilibrium line altitude is about 1320 m a.s.l. Since 1962, the 
cumulative mass balance has been calculated as 18000 mm w.e.
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Nigardsbreen (NORWAY)

3.12.1 Topography and observation network
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3.12.2 Net balance maps 2005/2006 and 2006/2007

Nigardsbreen (NORWAY)
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3.12.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.12.4 Accumulation area ratio (AAR ) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.13 WALDEMARBREEN (NORWAY/SPITSBERGEN)

COORDINATES: 78.67 N / 12.00 E 

Photo taken by I. Sobota, summer 2007.

Waldemarbreen is located in the northern part of the Oscar II Land, north-western Spitsbergen and 
flows downvalley to the Kaffiøyra plane. Kaffiøyra is a coastal lowland situated on the Forlandsundet. 
The glacier is composed of two parts separated by a 1600 m long medial moraine. It occupies an area 
of 2.5 km2 and extends from 500 m to 140 m a.s.l. with a general exposure to the west. Mean annual 
air temperature in this area is about 4 to 5 °C and annual precipitation is generally 300–400 mm. 
Since the nineteenth century the surface area of the Kaffiøyra glaciers has decreased by approximately 
35 %. Recently the Waldemarbreen has been retreating. Detailed mass balance investigations have 
been conducted since 1995.

The balance in 2005/06 showed a net mass loss of 747 mm w.e., winter accumulation +550 mm  w.e. 
and summer ablation 1297 mm w.e. The ablation in 2006/07 was also higher than normal 
( 1292 mm w.e.) and the accumulation was +521 mm w.e., resulting in a balance of –771 mm w.e. 
The mean value of the mass balance for the period 1995–2007 is 587 mm w.e.
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3.13.1 Topography and observation network
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3.13.2 Net balance maps 2005/2006 and 2006/2007
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3.13.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 

3.13.3 Net balance versus altitude (2005/2006 and 2006/2007)
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3.14 DJANKUAT (RUSSIA/NORTHERN CAUCASUS)

COORDINATES: 43.20 N / 42.77 E 

Photo taken by V. Popovnin in August 2001.

The valley-type glacier is located on the northern slope of the central section of the Main Caucasus 
Ridge and extends from 3700 m to 2720 m a.s.l. Its surface area is 2.93 km2 and the exposure is to 
the north-west. Mean annual air temperature at the ELA (ca. 3200 m a.s.l. for balanced conditions) 
is 3 to 4.5 °C and the glacier is temperate. Periglacial permafrost is highly discontinuous. Average 
annual precipitation as measured near the snout is 1100 to 1200 mm, but roughly three times this 
amount at the ELA. Seven 1:10000 topographic maps (from 1968, 1974, 1984, 1992, 1996, 1999 and 
2006) exist at Moscow State University but are not yet published. The peculiarity of the glacier is 
the migration of the ice divide on the firn plateau of the crest zone, redistributing mass flux between 
adjacent slopes of the main ridge.

Two reported years were extraordinarily unfavourable for the glacier. Such huge biannual ice loss 
( 800 mm w.e. and 2010 mm w.e.) has never been registered throughout the 40-year monitoring 
period. The glacier experienced considerable deficits in winter snow (7 and 26 %), but much more 
decisive was the unusually high ablation: it exceeded its norm by 20 % in 2005/06 and more than 1.5 
times the following year. Ablation (ca. 4000 mm w.e.) and mass balance in 2006/07 broke records,  
– first of all, owing to an extremely long melt season (at the expense of springtime, particularly) in 
the lowest altitudinal spans. The probability of the registered ablation value is estimated as once per 
70 years. This resulted in a noticeable morphological transformation of the terminal zone of the snout 
as well as in the icefall zone in the middle course where a long outcrop of the former subglacial barrier 
emerged from under the ice, partly breaking the continuity of the glacier body and depriving its left 
debris-covered snout periphery of nourishment from the upper reaches.    
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Djankuat (RUSSIA)

3.14.1 Topography and observation network
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Djankuat (RUSSIA)

3.14.2 Net balance maps 2005/2006 and 2006/2007
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Djankuat (RUSSIA)
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3.14.3 Net balance versus altitude (2005/2006 and 2006/2007)

3.14.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 
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3.15 MALIY AKTRU (RUSSIA/ALTAY)

COORDINATES: 50.08 N / 87.75 E 

Photo taken by Y.K. Narozhniy, 2nd of July 1992.

The valley-type glacier is located on the northern slope of the North Chuyskiy Range of the Russian 
Altai Mountains. It extends from 3714 m to 2246 m a.s.l., has a surface area of 2.72 km2 and is 
exposed to the east and north. It has an average thickness of 90 m (max. 234 m) and its total volume 
is estimated to be 0.25 km3. Mean annual air temperature at the equilibrium line of the glacier (around 
3160 m a.s.l. for balanced conditions) is 9 to 10 °C. The glacier is polythermal and surrounded by 
continuous to discontinuous permafrost. Average annual precipitation, as measured at 2130 m a.s.l., 
is about 540 mm. Mass balances of three glaciers within the same basin are being determined.

In both reported years, 2005/06 and 2006/07, total accumulation was rather close to its norm (the 
correspondent deviations were 5 and 8 %), and annual ablation exceeded its long-term mean value 
by 10 and 14 %, respectively. As a result, mass balance remained negative as in the previous years. 
However, both the budget parameters and frontal retreat values were influenced considerably by the 
consequences of earthquakes in 2003–2004. For instance, mass loss due only to ice collapses from 
the terminal part of Maliy Aktru snout was about 40–60 mm w.e. (averaged over the entire glacier 
surface), and the terminus retreated at a velocity of 18–25 m a-1, that is, 3–5 times higher than the 
common rate.
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3.15.1 Topography and observation network
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3.15.2 Net balance maps 2005/2006 and 2006/2007

Maliy Aktru (RUSSIA)
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3.15.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 

3.15.3 Net balance versus altitude (2005/2006 and 2006/2007)

Maliy Aktru (RUSSIA)

A
lti

tu
de

 [m
 a

.s
.l.

]

Net balance [mm]

Area distribution [%]

hypsography

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

-5000 -4000 -3000 -2000 -1000 0 1000

0 10 20 30 40 50

2006/2007

2005/2006

A
A

R
 [%

]

Net balance [mm] Net balance [mm]

EL
A 

[m
 a

.s
.l.

]

0

10

20

30

40

50

60

70

80

90

100

000100001-0002-
2800

2900

3000

3100

3200

3300

3400

ELA = -.24bn +3153.8, R2 = .75

000100001-0002-

AAR = .04bn + 70.0, R2 = .84



3 Detailed Information

77

3.16 STORGLACIÄREN (SWEDEN/NORTHERN SWEDEN)

COORDINATES: 67.90 N / 18.57 E 

Photo taken by P. Holmlund on 4th of August 2004.

Storglaciären in the Kebnekaise Mountains of northern Sweden is a small valley-type glacier with a 
divided accumulation area and a smooth longitudinal profile. It is exposed to the east, maximum and 
minimum elevations are 1750 m and 1130 m a.s.l., surface area is 3.12 km2, and average thickness 
is 95 m (maximum thickness is 250 m). Mean annual air temperature at the equilibrium line of the 
glacier (around 1450 m a.s.l. for balanced conditions) is about 6 °C. Approximately 85 % of the 
glacier is temperate with a cold surface layer in its lower part (ablation area), and its tongue lying 
in discontinuous permafrost. Average annual precipitation is about 1000 mm at the nearby Tarfala 
Research Station. 

The net balance in 2005/06 was negative ( 1720 mm w.e.) with an ELA at 1615 m a.s.l and a small 
AAR of 17 %. In 2006/07, the net balance was positive (+410 mm w.e.), which was also reflected in the 
ELA at 1480 m a.s.l. and the AAR of 50 %. Aerial photographs and corresponding glaciological maps 
are available for the years 1949/59/69/80/90/99. Recently, diapositives of the original photographs 
were reprocessed using uniform photogrammetric methods. A comparison of the glaciological mass 
balance with these new volume changes is in progress.
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Storglaciären (SWEDEN)

3.16.1 Topography and observation network
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Storglaciären (SWEDEN)

3.16.2 Net balance maps 2005/2006 and 2006/2007
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Storglaciären (SWEDEN)

3.16.4 Accumulation area ratio (AAR) and equilibrium line altitude (ELA) versus speci  c net 
balance for the whole observation period 

3.16.3 Net balance versus altitude (2005/2006 and 2006/2007)
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4   FINAL REMARKS AND ACKNOWLEDGEMENTS

Continuous mass balance records for the period 1980–2007 are now available for 30 glaciers from 9 mountain 
ranges. These glaciers have well-documented, long-term mass balance measurements based on the direct 
glaciological method (cf. Østrem and Brugman, 1991) and are not dominated by non-climatic drivers such as 
calving or surge dynamics. Corresponding results from this sample of glaciers in North and South America 
and Eurasia are summarized in Table 4.1 (all mm values in water equivalent):

Table 4.1:  Summarized mass balance data. The mean specific (annual) net balance of 30 glaciers averaged for the years 2000–2007, 
compared to the mean of the annual means of the last 20 years, is shown in the upper table. A statistical overview of the 
30 glaciers during the two reported years is given in the lower table. 

1980–1999 2000–2007
mean specific (annual) net balance 296 mm 706 mm
standard deviation of means ± 257 mm ± 410 mm
minimum mean value 728 mm (1998) 1269 mm (2003)
maximum mean value + 107 mm (1983) 61 mm (2000)
range 835 mm 1208 mm
positive mean balances 15 % 0 %
positive balances 32 % 18 %

2005/2006 2006/2007
mean specific (annual) net balance 1247 mm  676 mm
standard deviation ± 835 mm ± 1058 mm
minimum value 3190 mm Ålfotbreen 2745 mm Caresèr
maximum value + 560 mm Echaurren Norte + 1270 mm Ålfotbreen
range 3750 mm 4015 mm
positive balances 3 % 17 %

Taking the two reported years together, the mean mass balance was –962 mm w.e. per year. This represents 
more than a meter ice thickness loss per year and exceeds by about 35 % the mean mass balance since the 
turn of the century (2000–2007: –706 mm w.e.), and is more than three times the average of 1980–1999 
(–296 mm w.e.). During this most recent time interval, the maximum loss of the 1980–1999 time period 
(–728 mm w.e. in 1998) was already exceeded for the third time (–1269 mm w.e. in 2003, –744 mm w.e. in 
2004, –1247 mm in 2006); the percentage of positive glacier mass balances decreased from an average of 
32 % in the 1980s to 18 % and there were no more years with an overall positive mass balance (15 % during 
1980–1999). The melt rate and loss in glacier thickness continues to be extraordinary. This development 
further confirms the accelerating trend in worldwide glacier disappearance, which has become more and more 
obvious during the past two decades. 

The mean of the 30 glaciers included in the analysis is influenced by the large proportion of Alpine and 
Scandinavian glaciers. A mean value is therefore also calculated using only one single value (averaged) for 
each of the 9 mountain ranges concerned (Table 4.2). Furthermore, a mean was calculated for all mass balances 
available, independently of record length. In their general trend and magnitude, all three averages rather 
closely relate to each other and are in good agreement with the results from a moving-sample-averaging of all 
available data (cf. Kaser et al., 2006; Zemp et al., 2009). 
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With their dynamic response to changes in climatic conditions – growth/reduction in area mainly through 
the advance/retreat of glacier tongues – glaciers readjust to equilibrium conditions of ice geometry with a 
zero mass balance. Recorded mass balances document the degree of imbalance between glaciers and climate 
due to the delay in dynamic response caused by the characteristics of ice flow (deformation and sliding); 
over longer time intervals they depend on the rate of climatic forcing. With constant climatic conditions (no 
forcing), balances would tend towards and become finally zero. Long-term non-zero balances are, therefore, 
an expression of ongoing climate change and sustained forcing. Trends towards increasing non-zero balances 
are caused by accelerated forcing. In the same way, comparison between present-day and past values of mass 
balance must take the changes of glacier area into account, which have occurred in the meantime (Elseberg 
et al., 2001; Nemec et al., 2009). Many of the relatively small glaciers, measured within the framework 
of the present mass balance observation network, have lost large percentages of their area during the past 
decades. The recent increase in the rates of ice loss over diminishing glacier surface areas, as compared with 
earlier losses related to larger surface areas, becomes even more pronounced and leaves no doubt about the 
accelerating change in climatic conditions, even if a part of the observed acceleration trend is likely to be 
caused by positive feedback processes.

Further analysis requires detailed consideration of aspects such as glacier sensitivity and the mentioned 
feedback mechanisms. The balance values and curves of cumulative mass balances reported for the individual 
glaciers (Chapter 2) not only reflect regional climatic variability but also mark differences in the sensitivity 
of the observed glaciers. This sensitivity has a (local) topographic component: the hypsographic distribution 
of glacier area with altitude (for the first time reported in selected cases with the present bulletin) and a 
(regional) climatic component: the change in mass balance with altitude or the mass balance gradient. The 
latter component tends to increase with increasing humidity and leads to stronger reactions by maritime rather 
than by continental glaciers. For the same reason, the mean balance values calculated above are predominantly 
influenced by maritime glaciers rather than by continental ones. Maritme glacier are those found in the coastal 
mountains of Norway or USA/Alaska, where effects from changes in precipitation may predominate over the 
influence of atmospheric warming. The modern tool of differencing repeat digital elevation models (DEM) 
provides excellent possibilities to assess how representative long time series of local mass balance measurements 
are with respect to large glacier samples (Paul and Haeberli, 2008) and to analyze spatial patterns of glacier 
thickness/volume changes in entire mountain ranges: DEM differencing, for instance, revealed that average 
thickness losses in southern Alaska (Larsen et al., 2007) are far higher than the averages reported here from in 
situ observations on various continents.

Rising snowlines and cumulative mass losses lead to changes in the average albedo and to a continued surface 
lowering. Such effects cause pronounced positive feedbacks with respect to radiative and sensible heat fluxes. 

The evolution with time can be described by means of Figure 4.1:

Figure 4.1:  Mean specific net balance (left) and mean cumulative specific net balance (right) since 1980.
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Albedo changes are especially effective in enhancing melt rates and can also be caused by input of dust 
(Oerlemans et al., 2009). The cumulative length change of glaciers is the result of all effects combined, and 
constitutes the key to a global intercomparison of decadal to secular mass losses. Surface lowering, thickness 
loss and the resulting reduction in driving stress and flow, however, increasingly replace processes of tongue 
retreat with processes of downwasting, disintegration or even collapse of entire glaciers. Moreover, the 
thickness of most glaciers regularly observed for their mass balance is measured in (a few) tens of meters. 
From the measured mass losses and thickness reductions, it is evident that several network glaciers with 
important long-term observations may not survive for many more decades. A special challenge therefore 
consists in developing a strategy for ensuring the continuity of adequate mass balance observations under such 
extreme conditions (Zemp et al., 2009).

Table 4.2: Mass balance data for 9 mountain regions 1980–2007

Year Cascade Mnts. Alaska Andes Svalbard Scandinavia Alps Altai Caucasus Tien Shan Mean

1980 972 1400 300 475 1055 403 10 380 483 57

1981 967 775 360 505 194 11 213 910 271 172

1982 337 245 2420 10 185 914 460 420 338 499

1983 606 15 3700 220 756 456 197 970 220 244

1984 109 395 1240 705 194 115 307 210 667 254

1985 1541 515 340 515 451 415 200 380 581 314

1986 1011 60 1570 265 249 1031 73 500 595 579

1987 1703 535 950 230 925 711 183 1540 258 188

1988 1305 395 2300 505 1215 588 333 520 626 77

1989 875 1440 1260 345 1911 906 117 40 177 326

1990 834 1555 1300 585 1196 1105 107 340 454 466

1991 595 260 860 115 80 1200 480 310 903 490

1992 1400 210 1740 120 1161 1223 127 130 109 46

1993 1755 1170 290 955 1174 556 227 1100 287 215

1994 1515 660 1860 140 171 886 240 840 411 709

1995 1588 765 950 785 589 70 60 40 408 431

1996 61 950 1180 75 643 454 140 150 207 429

1997 129 2120 2530 570 470 400 123 270 1160 804

1998 2155 135 2890 725 221 1664 1110 1000 575 473

1999 820 1095 4260 350 123 699 113 560 511 766

2000 255 490 760 25 988 686 230 1140 222 257

2001 1165 120 1810 405 787 53 190 620 698 236

2002 214 875 80 550 1141 870 357 430 568 404

2003 1548 180 2060 845 1392 2557 363 280 13 506

2004 1930 2285 570 1045 161 1039 210 730 347 762

2005 1873 1020 850 870 309 1368 87 390 414 623

2006 1675 545 560 605 2025 1444 197 800 872 845

2007 180 1045 130 355 395 1742 297 2010 779 683

Mean 948 499 176 436 13 801 106 130 449 392

Cascade Mtns. Place, South Cascade
Svalbard  Austre Brøggerbreen, Midtre Lovénbreen
Andes  Echaurren Norte
Alaska  Gulkana, Wolverine
Scandinavia Engabreen, Ålfotbreen, Nigardsbreen, Gråsubreen, Storbreen, Hellstugubreen, Hardangerjøkulen, Storglaciären
Alps  Saint Sorlin, Sarennes, Silvretta, Gries, Sonnblickkees, Vernagtferner, Kesselwandferner, Hintereisferner, Caresèr
Altai  No. 125 (Vodopadniy), Maliy Aktru, Leviy Aktru
Caucasus  Djankuat
Tien Shan  Ts. Tuyuksuyskiy, Urumqihe S. No. 1
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The volume 50 (50) of the Annals of Glaciology published in 2009 presents recent work from the International 
Workshop on Mass Balance Measurement and Modelling at Skeikampen, Norway, in 2008. Issues discussed 
also concern the uncertainty ranges of measured mass balances and the accessibility of information from 
individual stake/pit measurements in view of energy balance modelling. The ideal measurement accuracy 
for glacier mass balance is defined as 0.1 m w.e. with a threshold limit of 0.2 m w.e (IGOS 2007). This 
goal can only be reached by systematic comparison and – in cases of major deviations – adjustment of the 
direct glaciological with geodetic mass balances (e.g. Thibert et al., 2008; Cogley, 2009; Huss et al., 2009). A 
corresponding quality ranking may have to be introduced with respect to the internationally reported numbers. 
Access to point measurements relates to complex questions and may, at first, become possible only in a limited 
number of cases.

Completion of the present Glacier Mass Balance Bulletin was made possible through the cooperation of 
the National Correspondents to WGMS and the Principal Investigators of the various glaciers, as listed in 
Chapter 5. Thanks are due to Ursina Gloor and Dorothea Stumm for their assistance with data collection, 
quality control and editing of this issue, and to Susan Braun-Clarke for carefully editing the English. Funding 
is mainly through the WGMS Bridging Credit of the Swiss National Science Foundation and the Department 
of Geography at the University of Zurich with contributions by FAGS/ICSU, the Federal Office for the 
Environment (FOEN) and by the Cryospheric Commission of the Swiss Academy of Sciences.
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5   PRINCIPAL INVESTIGATORS AND NATIONAL 
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ANTARCTICA Glaciar Bahía del  Pedro Skvarca and Evgeniy Ermolin
 Diablo  División Glaciología
   Instituto Antártico Argentino
   Cerrito 1248
   ARGENTINA – C1010AAZ Buenos Aires
   E-mail: glacio@dna.gov.ar 
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 Vernagtferner  Ludwig N. Braun
   Commission for Glaciology
   Bavarian Academy of Sciences
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   GERMANY – 80539 München
   E-mail: ludwig.braun@kfg.badw.de

 Goldbergkees Reinhard Böhm, Wolfgang Schöner, Bernhard Hynek
 Klein  eisskees Zentralanstalt für Meteorologie und Geodynamik (ZAMG)
 Pasterzenkees Hohe Warte 38
 Wurtenkees AUSTRIA – 1190 Wien
   E-mail:  reinhard.boehm@zamg.ac.at
    wolfgang.schoener@zamg.ac.at
    bernhard.hynek@zamg.ac.at

BOLIVIA  Chacaltaya  Perroy Edouard
 Charquini Sur IRD (Institut de recherche pour le développement)
 Zongo  213, rue La Fayette
   FRANCE – Paris Cedex 10 (75 480)
   E-mail: edperroy@yahoo.fr
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   Javier C. Mendoza Rodríguez
   IHH (Instituto de Hidráulica e Hidrología) and
   SENAMHI (Servicio Nacional de Meteorología e Hidrología)
   P.O. Box 699
   BOLIVIA – La Paz
   E-mail: jmendoza@senamhi.gov.bo

   Bernard Francou
   Laboratoire de Glaciologie et de Geophysique
   de l’ Environnement CNRS
   FRANCE – St-Martin d’Heres
   E-mail: francou@lgge.obs.ujf-grenoble.fr
    bernard.francou@ird.fr

CANADA Devon Ice Cap NW Dave O. Burgess  and Roy M. Koerner (deceased)
 Meighen Ice Cap Natural Resources Canada
   Geological Survey of Canada
   601 Booth Street
   CANADA – Ottawa, ON K1A 0E8
   E-mail: David.Burgess@NRCan-RNCan.gc.ca
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 Peyto  Natural Resources Canada
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   CANADA – Ottawa, ON K1A 0E8
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 White  Graham Cogley and Miles A. Ecclestone
   Department of Geography
   Trent University
   1600 West Bank Drive
   CANADA – Peterborough, Ontario K9J 7B8
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CHILE Echaurren Norte  Fernando Escobar and Jorge Quinteros
   Dirección General de Aguas
   Morandé 59
   CHILE – Santiago
   E-mail: fernando.escobar@mop.gov.cl

CHINA Urumqihe S. No. 1  Huilin Li and Huian Yang
   Cold and Arid Regions Environmental and Engineering
   Research Institute (CAREERI)
   Chinese Academy of Sciences (CAS)
   260 West Donggang Road
   P. R. CHINA – 730 018 Lanzhou, Gansu
   E-mail: lihuilin@lzb.ac.cn

COLOMBIA La Conejera  Jorge Luis Ceballos
 Ritacuba Negro Instituto de Hidrología, Meteorología y 
   Estudios Ambientales (IDEAM)
   Subdirección de Ecosistemas e Información Ambiental
   Carrera 10 No. 20-30
   COLOMBIA – Bogotá
   Email: jorgec@ideam.gov.co
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ECUADOR Antizana 15 Alpha  Bolívar Cáceres Correa    
    Programa Glaciares Ecuador
   Instituto Nacional de Meteorología e Hidrología (INAMHI)
   Iñaquito 700 y Corea
   ECUADOR – 16 310 Quito
   E-mail: ernestocaceres2002@yahoo.com.mx
    bcaceres@inamhi.gov.ec

   Bernard Francou
   Laboratoire de Glaciologie et de Geophysique
   de l’ Environnement CNRS
   FRANCE – St-Martin d’Heres
   E-mail: francou@lgge.obs.ujf-grenoble.fr
    bernard.francou@ird.fr
  

FRANCE Argentière Christian Vincent and Michel Vallon  
 Gebroulaz  Laboratoire de Glaciologie et de Geophysique
 Saint Sorlin de l’ Environnement CNRS
   P.O. Box 96
   FRANCE – 38402 St. Martin d’Hères Cedex
   E-mail: vincent@lgge.obs.ujf-grenoble.fr

 Ossoue  Pierre René
   Association Moraine
   Village
   FRANCE – 31110 Poubeau
   E-mail: asso.moraine@wanadoo.fr

 Sarennes Emmanuel Thibert and Didier Richard
   CEMAGREF
   Snow avalanche engineering and torrent control
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   E-mail: didier.richard@cemagref.fr
    emmanuel.thibert@cemagref.fr

GREENLAND Mittivakkat Niels T. Knudsen
   Department of Earth Science
   Ny Munkegarde Bg. 1520
   DENMARK – 8000 Århus
   E-mail: ntk@geo.au.dk

   Bent Hasholt
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   University of Copenhagen
   Øster Voldgade 10
   DENMARK – 1350 Copenhagen
   E-mail: bh@geo.ku.dk

ICELAND Brúarjökull Finnur Pálsson and Helgi Björnsson 

 Dyngjujökull Institute of Earth Sciences
 Eyjabakkajökull University of Iceland
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5.2 NATIONAL CORRESPONDENTS OF WGMS
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 Instituto de Geofísica
 Universidad Nacional Autónoma de México
 Circuito Exterior, C. U. Coyoacán
 MEXICO – México D. F. 04510 
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 P.O. Box 1047, Blindern
 NORWAY – 0316 Oslo
 E-mail: j.o.m.hagen@geo.uio.no

PAKISTAN Ali Ghazanfar
 Head Water Resources Section
 Global Change Impact Studies Center (GCISC)
 NCP Complex, Quaid-i-Azam University Campus
 PAKISTAN – Islamabad
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